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Abstract  

Scalar fields with interaction 

k ~ 4~i2~bj 2 or k' ~ ~i4)jc)kc~ t 
i ~ ] i,j, k ,  l pairwise distinct 

are considered in Green's function formalism of  quantum field theory. Equations for 
Green's functions are derived under the assumption that  some G2n+ 1 are not  zero. 
Descending problems from given (model) G3, G4 and from G4, Gs are discussed, without  
appealing to perturbation theory. 

1. Introduction 

In this paper we consider symmetry-breaking solutions of Green's function 
equations derived from Lagrangians without continuous internal symmetry. 
As Goldstone's theorem applies only to breakings of continuous groups, one 
need not worry about unwanted massless bosons in the above-stated problem. 

To be specific let us begin with the following Lagrangian: 

1 = __ idi2(~i 2 + ~ g  ~ ,  ~)i2~2, N = 4,5,6 (1 .1 )  

"= i s /  

The only symmetry groups apart from the Lorentz group are discrete groups of 
involutions and permutations. If it is assumed that the Green's function inherit 
the invariance under those groups of the Lagrangian, the equations to be 
considered are those shown graphically in Figure 1. If one wants to look for a 
set of Green's functions that does not inherit the invariance of the Lagrangian, 
one has to consider the following equations (in momentum representation): 

G2, i(P) = {p2 _ /Ai 2 _ ~ / reg(p)}- I  (1 .2a )  
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+=++ 

Figure 1. Graphical representation of Green's function equations without G2n + 1. 

p'2 p'2 / ~ i  N f d(p '2) f d(p (C ,i*a ,i*a3,,ik 
gi 2 ~i = ] k = 1 

* G2, k * G3, kii * G2/+ G2, / * G2j * G3#k * G2, k * G3, kii * G2, i) 

G2, i * Gz , /*  G2, ] * G4, i#i I + y (p") 
/vs i ) 

~ - X ( [ [ [ [ G 2 * * Z * G 3 ~ * G 2 * * Z * G 3 ~ + [ [ G  z * * 3 * G 4 D ( p )  (1.2b) 

G3, ijk = )kl/2 ~G2, i * G2, ] * G3, i]tc] + (J +~ k) 

N 

+X ~ ~ ~G2,i*G3, i/m *G2, m *G3, lmn *G2, n *Ga ,nx l*G2 , l~+""  
l = i  m , n = l  (1.2c) 

Here, * is a shorthand for convolution, and [[ ~ for regularization. For terms 
with two-particle thresholds, the integration fuP~ d(p '2) in (1.2b) must be taken 
in the sense of  pseudofunctions. We normalize G4,iij] so that G4,iiH(O,O,O,O) 
= 1, therefore our X corresponds to gZ. [See also Figure 2. For regularization 
of Gn(n >~ 3), see the Appendix.] 

If perturbations is assumed, G2n + 1 (r/ = 0 ,1 ,2  . . . .  ) are identically zero. We 
have, however, no a priori reason to assume that the perturbative approach is 
the only feasible approach. So we consider whether nonzero G2n + l'S are con- 
sistent with Green's function equations and the diagonality of  self-energy parts 
(the absence of particle mixing). 
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Figure 2. Graphical representation of Green's functions in broken discrete symmetry. 

As has been discussed in our previous paper (Yoshimura, 1976), in the 
nonperturbative approach, one has to give G 4 as an input to the equations for 
Green's functions. If  a G4 is suitably chosen, one can determine G2, assuming 
G 3 = 0. What is the situation if, besides G4, nonzero G 3 or Gs are given as 
input? 

2. How many G3,iil~s can be gil,en as nonzero input? 

In this section we consider the combinatorial aspect of  the problem. We 
demand that the self-energy part be diagonal. In other words, we assume the 
absence of  particle mixing. Then only certain G3,ijk's may take nonzero values. 

In the case N = 4, G3, iil~s with the following combinations o f  indices can 
be taken as nonzero input at most (iij, for example, stands for iij, iji, and fii) 

~iij, ikl, jff, jkk,  ill } = 14a 
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or  

(iii, if/, kkk,  kll } = I4z, 

where i, L k, I are distinct.  Otherwise ~ acquires nondiagonaI elements. 
For N = 5, the maximally permissible combinations are 

{iij, ikl, jjj, jkk,  jll, j m m  } = Isa 

and 

{iii, ijj, kkk,  kll, k m m }  = Isb 

with i, j, k, l, m distinct. 
In the case N = 6, maximally permissible sets of  indices are 

{iij, ikl, imn, jjj, jkk,  ill, jmm,  inn} = I6a 

(iii, ijj, ikk, ill, imm, kkn,  klm} = I6b 

{iii, ijj, kkk,  kll, kmm,  knn, lrnn} = 16c 

{iii, ijj, ikk, klm, lln, mmn,  nnn} = I6a 

(iii, ijj, ikk, ill, klm, mmn,  nnn } = I6e 

with i, j, k, l, m, n distinct. 

3. Descending Problem wi th  Given G 3 and G 4 

In this section we consider the problem of  finding G2 when G 3 and G4 are 
given. It is convenient to normalize G4 so that G4,iijj(O,O,O,O ) = 1. As in our 
previous paper we assume that G4 has the following asymptotic  behavior: 

IP121 s .  . . Ip421 c~ 
IG4(pl . . . . .  P4)I ~< cl (iP121 + . . .  + [p4Z [)4~+~, 

As to G3, we assume 1 
{ 2{ c~' { 21C; 2{a' 
P~ P2 P3 t 

(tp121 {Ga(pl ,p2,pa)i  <~ e 2 + tp221 + ip321)3a,+t~,, a > O, f l ' >  0 

(3.2) 
1 If ~, #, c~', #' are not  integers, the expression (1.2b) does not  have a logarithmic factor 

and, consequently, is free from ghost. As we do not  use perturbative input, arguments 
based upon CaUan-Symanzik-type equations do not  apply to the conditions (3.1) and 
(3.2). The inequalities ~3 > 0 and/3' > 0 imply convergence of  the expressions 

d d 
[[G 2 ** 2 * G3] * G 2 ** 2 * a3l  (P)' d - ~  [c2' ** 3 * G4] (P) d(p 2) 

for Ip 21 < ~, and 

0 < lim G2(p)(G~(p)) 4 < ~, 
p2._+~ 

so that the renormalization constant Z computed from the solution o* of equation (3.3) 
below is finite and the canonical quantization is possible provided the pseudofunction 
used in the definition of (1.2b) does not dominate with wrong sign in the high-energy 
limit. 

a >  0,t~>~0 

(3.1) 
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Then the equation to be considered is 

E[o] - [q~ - I1 [o] = 0 (3.3) 

where 

a i G2, i - G °. G ° = , ~ ( , i: free propagator with mass ~zi) 

O[a]  = X ( ~ G  2 * *  2 * G3~ * G 2 ** 2 *G3~ + ~G2 ** 3 * G4~ ) 

[(G°) -1 - X(t[G2 ** 2 * G3] * G2 ** 2 * Gag + ~G2 ** 3 * G4~)]-1(3.4) 

The map ¢~ is neither completely continuous, nor contracting, nor monotone.  
So we appeal to the Newton~Kantorovich scheme. We define the sequence {an}  

as follows: 

- '  ( 3 . 5 )  o n  = % - x - [~- ( a n -  x ) ] - I X [ a n  - d ,  n C 2~ + 

Then we can invoke the following theorem (Jank6, 1968). 

T h e o r e m  1. Suppose that the following conditions are satisfied: 

(1) There exists an element % such that the Frechet derivative 
X[Oo] has inverse (~ ' [ ao ] )  -1 that is bounded in norm: 
I1~' [O0]-1 I[ <~ Bo. (See footnote 2) 

(2) II~'[ao]-l.E[Oo] II -< r~o 
(3) Lipschitz condition 
IIO'[ax] - O ' [ a 2 ]  II -< KIIoI - o211Vox, a2 E S -  { o l l o -  ao[I < 2%) 

(4) ho - BoK% < ½ 

Then the equation ~[o]  = 0 has only one solution in S and the series 
(an}  converges to that solution. 

For our equation (3.4) we have the following estimate when 3, ~ 1 : 

B o = O(1), r/o = O(X), K = O(X) 

while the integrations contribute finite factors after regularization. Therefore 
one can expect h = O(X 2) < ½ for sufficiently small X, i.e., the sequence con- 
verges to a locally unique solution 

If  %, G3, and G4 are chosen so as to make % sufficiently small, the theorem 
holds even if X is not very small. This is desirable in order that irreducible higher 
Green's functions do not become too large, because IIG2n + 1 tl ~ X -n + 11163 It- 

We use the following norm for 

tlall=al sup la(p)l+a2 sup Ip2a(p)I 
p ~  ~ p ~  R 

This choice corresponds to the canonical quantization. 
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For existence arguments, we have the following theorem (Fabry, 1973): 

Theorem 2. Suppose the following conditions are satisfied: 
(1) Map qs: S(ao, p) C N ~ Y is continuous on 5'. 
(2) Frechet derivative qY(a) exists for any o E S(aop). 
(3) Right inverse [I - c)'(a)] t exists; 
(4) There exists a function 4:  [0, p] -+ •+ such that 

[I-  ~ [o l l t [ I -  ~1[Oo1 -< ¢ ( 1 1 o 0  - oll)Va~S 
i.e., [ I -  q5 [o]]t  [ 1 -  cb] [%] is locally Lipschitzian, and the equation 

f du[~(u)] =1 
0 

has a solution r* E [0, p].  
Then the equation [ I -  ~]  [a] = 0 has a solution a* C S(oo, p). 

The method of  tangent parabola and the method of  tangent hyperbola are 
applicable, too, but we do not repeat the arguments here (see our previous paper, 
Yoshimura, 1975; also Jank6, 1968). 

4. Ascending Problem 

As has been discussed in our previous paper (Yoshimura, 1976), one 
cannot determine higher Green's functions without resorting to perturbation 
theory. Here we consider selection rules of  six-point functions in the presence 
of  three-point functions. In the presence of  nonzero three-point functions the 
equations for G5 and G 6 read 

G 3 = X1/2~G 2 ** 2 * G3~ + (2)XlIG2 ** 5 * G 3 ** 37 + (2)X~G2 ** 4 * G 3 * G4]] 

+X~G2 ** 3 * Gs~ (4.1a) 

G4 = e + X1/2~G2 ** 3 * G 3 ** 21 + X1/2~G2 ** 2 * G4~ 

+ (3)3,~G2 ** 6 * G 3 ** 4 ~ + (3)X~G 2 ** 5 * G 3 ** 2 * G4~ 

+ X~G2 ** 4 * G4 ** 2]] + (2)XI[G 2 ** 4 * G3 * Gs ]] 

+ X~G z ** 3 * G6~ (4.1b) 

Here, a number in parentheses stands for the number of  topologically distinct 
graphs (see Figure 2). The "inhomogeneous" term e is 1 when the values of  
indices are such that bare vertex is present, and is zero otherwise. 

In the case N = 4, if one takes G4, iij](i @f) and G3's with indices belonging 
to the set I4a or I4b as nonzero input, the first three terms on the right-hand 
side of  equations (4.1 a) do not  generate three point functions with other 
values of  indices. On the other hand, even if, for example, input G3, iii is zero 
in the case I4a, three-point functions with indices iii are generated by the first 
three terms on the right-hand side of  equation (4. la). Therefore the contribu- 
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tion of  the last term with Gs, iii]j must not  be zero and must cancet the 
contr ibut ions o f  the first three terms. This condit ion can be writ ten in the 
following form: 

Xl/2~G~ ** 2 * G3]I + (2)X~G 2 ** 5 * G 3 ** 3~ 

+ (2)X~G2 ** 4 * G 3 * G4] + X[[G2 ** 3 * Gs ~ = 0 (4.2) 

Here indices are suppressed because we shall have to mention equations of  the 
same form but with different values of  indices. 

The situations are similar in the case N = 5. 
For  the case N = 6, the situations are quite different. If one takes G4, iiij 

(i 4 = j )  and G3's with indices either I6a or I6c as nonzero input, the first three 
terms on the right-hand side of  equation (4.1a) do not  generate three-point 
functions with other values o f  indices. But i f  one takes G3's with indices 16o, I6a, 
or I6e as nonzero input,  the first three terms on the right-hand side of  equation 
(4.1 a) generate three-point functions with other values of  indices, so that one 
gets conditions of  the form of  equation (4.2) for those values of  indices. 

The condit ion (4.2) tells what Gs's must not be zero for a given input, but, 
as this is an ascending problem, this condit ion does not determine those Gs's 
uniquely. Other five-point functions need not  be zero but must be orthogonal 
to G 2 ** 3. 

Now, let us consider the equation (4 . tb) .  To be specific, take the case I6a. 
If  G4, iijj and G3's with indices I6a a r e  input into equation (4. lb) ,  the second 
to sixth terms on the right-hand side generate four-point functions with 
radices such as 1234, 4444, etc., but  not  such as 1223. Then we get the 
following conditions:  

{X 1/2 ~G~ ** 3 * G3 ** 2~ + xl/2~G 2 ** 2 * G4]~ + (3)X~Gz ** 6 * G3 ** 4~ 

+ ( 3 ) X ~ G 2 * * 5 * G  3 * * 2 * G 4 ~ + x l [ G z * * 4 * G  4 . . 2 ~  

+ (2)3,~G 2 ** 4 * G 3 * Gs~ + X~G 2 ** 3 * G4~}iik l = 0 (4.3) 

for ifkl such that  G4, ijkl is assumed to be zero. This equation determines what 
irreducible six-point functions must not  be zero. However, this equation does 
not determine six-point functions because it is an ascending problem. Alter- 
natively one can assume that G4, 1234 etc. are not  zero but input to equation 
(4.1b), but  the minimal set of  values of  indices for which G 6 must not  be zero 
remains the same. 

5. Descending Problem from Given G 4 and Gs 

In this section, we consider the problem of  determining G 2 and G3 when 
G4 and G s are given. For  this problem, the relevant equations are 

XG°(~(G ° + ~) ** 4 * G 3 ** 2~ + ~(G ° + o) ** 3 * G4~) 

( (G°)  -1 - X(~(G ° + o) ** 4 * G 3 ** 2~ + ~(G ° + o) ** 3 * G4~)} -1 = ~I 

(5.1a) 
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~.1/2 [ (G°  + cs) ** 2 * G3] ] + (2)X[(G ° + o) ** 5 * G3 ** 3]] 

+ (2)X~(G ° + o) ** 4 * G 3 * G4] + ~ ( G  ° + o) ** 3 * Gs ]] = G3 (5.1b) 

We write this equation abstractly as follows: 

~ [G4Gs ; a, G3] = 0 (5.1') 

Here, for the Newton-Kantorovich scheme to be applicable, regularization of  
subintegrations is necessary (see Appendix).  
Now, we write the Fr6chet derivative ~2 as supermatrix whose elements are 
linear operators: 

~,  [G4, o . = [~'~ '11 ~'12] 
Os, o , . , .  ] !_r*h r a h J  (5 .2a)  

a'1t  = X [ ( 4 ) ~ ( O  ° + t l ' )  **  3 *"  * C ~  * *  2 ~  + ( 3 ) ~ ( a  ° + o * )  **  2 * .  * a 4 ] ] ]  

{(G°) -1 - X[~(G ° + o*) ** 4 * G~ ** 2~. + ~(G ° + or*) ** 3 * G4]]] )-2 _ I 

(5.2b) 

~2~2 = X(2)~(G ° + o A) ** 4 * G~ *" 

{(GO) -1 - X~(G ° + a " )  ** 4 * G~ ** 2]  + ~(G ° + a*) ** 3 * G4]} -2 

(5.2c) 

f2'21 = (2)Xi/U~(G ° + o") *" * G3~ + (10)X[(G ° + a*) ** 4 *" * G~' ** 3]] 

+ (8);~I[(G ° + o*) ** 3 * -  * G~' * O4] ] + (3)x]](a ° +o*) ** 2 * - *  Gs]] 

(5.2d) 

~2~ 2 = ~a/2 ~(G° + o A) ** 2 *" ]] + (9)X~(G ° + a*) ** 5 * Ga ** 2 *" 

+ (2)X~(G ° + a*)  ** 4 *" * C4~ - [ (5.2e) 

For  sufficiently small X and [G ° ** 3 * Gs] with sufficiently small norm, 
one gets the following estimate: 

B = O(1), rTo = O (Xl/2), K = O(Xl/2), ho = B~o K = O(;k) 

(5.3) 

i.e., the solution is locally unique, if  one begins with the zeroth approximation 
% = 0, G3, 07¢, 0 = 0. Because of  the " inhomogenui ty"  of  equation (4.3), there 
is no trivial solution. 

One cannot descend from a given set of  G s and G 6 by the Newton-  
Kantorovich scheme because of  the presence of  the inhomogeneous term e 
on the right-hand side of  equation (4.1 b). However, i f  a set of  Gn(n = 2,3 . . . . .  6) 
are given, one cannot change Gm(m = 2,3,4) continuously without  affecting 
Gs and G 6. In other  words, if  two or more sets {Gs, G6}, corresponding to the 
same set Gm(rn = 2,3,4) exist at all, norms of  their differences must be finite, 
because of  the local uniqueness theorem. 
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If we do not demand that G4, a2N, etc., be zero, we get "homogeneous" 
equations for these G4's: 

G4,1234 = (Xl/2~( G° + o*) ** 3 * G3 ** 2~ 

+ ' ' "  +X~(G ° + o ' )  ** 3 * G6])1234 (5.4) 

etc., as these equations do not involve those G6's that appear in the "inhomo- 
geneous" equations for G4, u#, one can solve (at least in principle) descending 
problems from G4, ii]b Gs, and G 6 that appear in equation (5.4). 

If a descending problem involves equations of the form of equation (4.2) 
and/or (4.3), the Newton-Kantorovich scheme is not applicable because the 
Fr6chet derivative is not invertible. If G s appearing in equation (5.1 b) are 
solutions of an ascending problem involving equation (4.2), then the solution 
of equation (5.1) such that G3's with appropriate values of indices are zero 
exist. 

6. Interaction ~ ¢i~/q~kqJl 
i, ], k, I pairwise  d i s t inc t  

In this section, we consider the following interaction Lagrangian: 

' ' S q~,q~j~q~z 
~ I = g i, j, k, l pail'wise distinct 

In the case N = 4, if G3,~23 is the only zonzero input three-point functions, 
the self-energy parts are not affected at all, but the first three terms on the right- 
hand side generate three-point functions with indices 114, 224, and 334, which 
must be cancelled by the last term involving irreducible five-point functions. If 
other input G3's are not zero, G3's contribute to the self-energy parts. Even if non- 
zero G3's are so chosen that the self-energy is diagonal (i.e., there is no particle 
mixing) the first three terms on the right-hand side of equation (4.1a) generate many 
other three-point functions, which must be cancelled by the contribution of irre- 
ducible five-point functions. This requirement determines a minimal set of indices 
for which irreducible five-point functions must not be zero when a set of non- 
zero three-point functions are given as input. 

The situation is quite different in the case N = 5. In this case, either the 
contribution of G3's to the self-energy parts is identically zero or particle 
mixing occurs, depending on the set of indices for which Gs's are not zero. 
In other words, there is no set of G3's that contributes to the self-energy parts 
without causing particle mixing. When the input set of G3's is such that G3's 
do not contribute to the self-energy parts, the first three terms on the right- 
hand side of equation (4.1a) generate three-point functions with only such 
values of indices for which input Ga's are zero. The second to sixth terms on 
the right-hand side of equation (4.1b) do not generate four-point functions 
with indices such as 1223 etc., but 1234 etc. As G4, 1234 etc. do not cause 
particle mixing, we need not assume them to be zero. 

The situation is quite similar for the case N = 6. 
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7. Concluding Remarks 

If a Lagrangian (or Hamiltonian) is invariant only under a discrete group, 
Goldstone's theorem does not apply, so that solutions of the equations for 
many-point functions need not inherit the invariance of the Lagrangian. As 
transition between a "normal" symmetry-preserving solution and a symmetry- 
breaking solution is not defined in quantum field theory, the question of 
stability of the latter does not arise. This is an essential difference between 
the quantum field theory and the many-body problem. 

Contrary to the so-called bootstrap mechanism, our equations do not make 
sense if X = O. Interaction must be triggered by X v e O. If  one demands that 

G2irred n + 1 II ~ 0 as n ~ % symmetry-breaking solutions are excluded. As our 
input involves many parameters with dimensions, arguments based on scale 
invariance do not apply, while the renormalization group equations are trivial 
unless extra input is assumed. 

As far as lower Green's functions are concerned, G3 and G 4, or G 4 and Gs 
or G4, Gs, and some G 6 can be given as arbitrary input subject to certain 
restrictions, though G2n + i must be identically zero in perturbation theory. 

Though the integrals 

[G2 ** 4 * G3 ** 2](p), [G 2 **3 * G4I(P), (ip2J < ~)  

converge for G3 and G 4 satisfying the conditions (3.1) with o~ + ~ > 1 and 
(3.2) and consequently 6/1 and Z are finite, one cannot use the conventional 
renormalization procedure for the descending problem (Yoshimura, t 975a). 
Therefore, it is not possible to compute dynamically generated masses even 
if vertex parts are such that the integrals in equation (1.2b) converge. Given a 
Langrangian, the equations for many-point functions are derived involving 
masses as arbitrary" parameters, even if G3'S and G4's are given. (Perturbation 
theory does not enable one to compute dynamically generated masses, either). 

In the presence of particle mixing, one cannot separate a pole-free object 
o from two-point functions, so that one does not have a set of suitable objects 
to be found as a fixed point of operator equations in direct product of Banach 
spaces. Therefore, if a given set of G3's is such that particle mixing occurs, one 
cannot descend from G3's and G4's by any known method, though solutions 
may or may not exist. 

If a continuous symmetry group is already (spontaneously or nonspontane- 
ously) broken into a product of a continuous group and a discrete group, the 
solution of Green's function equations need not inherit the invariance of the 
Lagrangian under the discrete group, without generating Goldstone particles. 

Appendix: Regularization 

Lest the right-hand side of  equation (3.4) should have poles even when o is 
not a solution of equation (3.3), one has to regularize the self-energy parts by 
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the following substitution (Taylor, 1968): 
p2 p,2 

£i (p) -~£reg(p)~  f d(p '2) f d (p"2)  d2£i*(p' ' )  (Ala) 
.? .? dfP"2) 2 

p - q  

E/(p)  = ~ - ~ P  + [G 2 ** 3 * G4I (p) (Alb) 
q 

p - q - r  - r  

q q o 

not by renormalization constants 6/1 and Z. For diagrams with three or more 
external lines, one must use substitutions, e.g., 

q 

P - q  p - q  
With - - ~ -  as above. 

1 
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